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Abstract-A new scaling of the mean rate of turbulent kinetic energy dissipation is proposed for application 
to free shear flows. The advantage of the proposed scaling is that it permits a direct comparison of the 
dissipation rate in flows driven by completely different mechanisms (e.g. inertia or buoyancy forces) and 
of different flow configurations. The same scaling, when applied lo pipe flow suggests that the non- 
dimensional parameter so formed is analogous to a ‘friction factor’ for this motion. Application of this 
development to the motion of buoyant jets and plumes suggests that the mean rate of dissipation in 
buoyancy driven plume flows may be twice that for jets and is associated with the larger rate of entrainment 

in such flows. 

1. INTRODUCTION 

THE RATE at which kinetic energy is dissipated is an 
important parameter in the description of any fully 
developed turbulent flow where, according to the 
model proposed by Kolmogorov, energy is trans- 
ferred in a cascade process from larger to smaller 
scales. This process appears essentially inviscid down 
to the equilibrium range of scales where the viscosity 
v becomes important and, under its action, kinetic 
energy is dissipated into heat. At equilibrium the rate 
of energy supply from the mean flow to the largest 
scales is therefore equal to the rate of kinetic energy 
dissipation. It should be noted that while the dynamics 
of the large structures of the turbulent Bow are 
governed by the overall geometry and driving forces, 
the dynamics of the smallest structures in this model 
are governed only by the viscosity and the dissipation 
rate. The value of the strain rate (E/V)‘/’ defining the 
Kolmogorov range of scales of the flow, becomes a 
critical parameter in the study of processes that occur 
at these small scales. These, for example, would 
include the coagulation of suspended particles in a 
moving fluid, the formation of droplets in a cloud, 
the mechanism of mixing and product formation in 
chemically reacting shear flows, etc. The rate at which 
naturally occurring flows are dissipating energy is 
important in engineering problems concerned with the 
disposition of particles in an atmospheric or water 
environment. Flows of this nature are often 
characterized by the presence of buoyancy as a driving 
force of motion. As was pointed out by List (11, the 
research literature concerning buoyancy driven lab- 
oratory flows is deficient compared to inertia driven 
flows in general. While, for example, measurements 
of the kinetic energy dissipation rate have been made 
in the plane and round jets, shear layers, wakes and 
boundary layers, similar measurements in buoyant 
plumes have not been reported. This may be partly 

attributed to the increased experimental difficulty 
associated with measurements in such buoyancy 
driven flows. On the other hand Turner [2] pointed 
out the large energy deficiency in self-preserving con- 
vective plumes or thermals. 

The rate of dissipation of total kinetic energy in a 
turbulent flow (see for example Townsend [3)) can be 
expressed as 

In free turbulent flows the mean velocities Vi vary 
smoothly across the flow, therefore spatial derivatives 
are negligible compared to the spatial derivatives of 
the instantaneous velocity fluctuations ui and can be 
neglected. Then the kinetic energy dissipation rate is 
approximated by 

v au, auj 2 
&=j F+& . ( > 

Thus, a direct measurement of the dissipation rate at 
a point in the flow would involve measurement of all 
terms in equation (1). This has not been achieved 
because of the obvious experimental difficulties associ- 
ated with such a measurement. The usual approach 
taken involves (i) making an assumption of isotropy 
relevant to the particular flow in order to reduce the 
number of terms to be measured and (ii) invoking 
Taylor’s frozen turbulence hypothesis to replace the 
spatial derivatives with temporal derivatives. Some- 
times other terms in the equation for the turbulent 
kinetic energy are also measured and a turbulence 
kinetic energy budget is obtained. However, the pres- 
sure velocity correlation term has not been measured 
yet, hence this equation cannot be used to check the 
accuracy of these two assumptions. Pointwise esti- 
mates of e in plane and round turbulent jets have been 
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NOMENCLATURE 

half width UO jet velocity at the exit. 
jet diameter at the exit 
total dissipation of energy per unit time 
(equation (12)) Greek symbols 
flux of mean flow kinetic energy across a parameter equal to 2 for a flow with 
a horizontal plane (equation (1 I)), plane symmetry and equal to 3 for a 
E(.u) flow with axial symmetry 
flux of kinetic energy of the entrained PO buoyancy flux 
fluid (equation (14)) E rate of dissipation of total kinetic 
flux of turbuient kinetic energy across energy 
a horizontal plane at .r (equation E^ averaged kinetic energy dissipation rate 
(14)) over a flow volume V 
friction coefficient in the Darcy- E non-dimensional number, ZA”/E 
Weisbach equation A width of turbulent flow-ambient fluid 
turbulent fluctuation along the x,-axis boundaries, A(x) 
entrainment velocity v kinematic viscosity 
mean velocity along the x,-axis 7 mean interfacial stress 
mean axial velocity 4 experimental coefficient. 

1 

performed by Heskestad [4], Bradbury [5], Wygnanski 
and Fiedler [6], Gutmark and Wygnanski [7] and 
Antonia ef al. [g]. There appear to be no such measure- 
ments in buoyant jets and plumes. However, reason- 
able estimates of the kinetic energy dissipation rate 
may be obtained from the available experimental data 
on such flows. To this end, we introduce I, the aver- 
aged kinetic energy dissipation rate over a flow 
volume V defined as 

j 
E(X, Y) d V 

I’ 
E^= 

v (2) 

Time exposure photographs and measurements in 
both jets and plumes indicate that the region where 
jet fluid may be found is separated from the ambient 
fluid region by approximately linear boundaries (see 
Fig. 1) A(x) which may be well approximated by 

A(x) = 4x (3) 

where 4 2 0.5 for round or plane jets and plumes. 
Specifying the integrating volume V to be the 

infinitesimal volume d V bounded by the planes x and 
x dx (see Fig. 1) we define the averaged kinetic energy 
dissipation 6 (per unit depth) for plane jets and plumes 

by 

s+dr I\(x)! 2 

E^(x)A(x) dx = 
5 I 

E(.v, Y) dx dr (4) 
X - ,%\(.C), 2 

and for round jets and plumes by 

.rtd.r 
(E’)@A2/4) dx = 

s s 

A\(X): 2 
Zxtz(x, r) dx dr. 

X -r\(X), 2 

Estimates of E’ will be obtained for the turbulent jet 

and plume using experimental measurements of the 
mean and turbulent flow quantities. 

2. SCALING LAWS 

Friehe et al. [9] derived the following relation 
between the kinetic energy dissipation rate E along the 
axis of a round jet, the exit diameter d. the velocity at 
the jet exit U,, and the axial distance x from the flow 
origin : 

E(x,O)d/U; = C,(~jd)-~. (5) 

*,u 

Time averaged flow 

boundaries 

FIG. 1. Definition of the flow width A(s). The origin of the 
jet (or plume) is at x = y = 0. 
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Similarly, Antonia et al. [8] proposed for a plane jet 
with slot width d, the relation 

&(.‘I, 0) d/U; = C2(x/d)-5’Z. (6) 

Although the above scaling for the dissipation rate is 
successful in reducing experimental results in similar 
flow geometries, the parameter Ed/U: seems to have 
limited physical significance. In particular, this scaling 
is not directly applicable to a buoyant jet or a plume 
of similar geometry. On physical grounds, one would 
expect that the dissipation rate at a certain axial 
location for both jets and plumes to depend on local 
flow scales and not on initial parameters, such as the 
orifice diameter. In view of recent developments in 
the understanding of the importance of local integral 
quantities in jet dynamics (see for example List [1], it 
seems reasonable to scale the averaged dissipation rate 
d, with the local kinetic energy flux E and the local flow 
width A. Then, on dimensional grounds, we obtain the 
non-dimensional number 

E=T (7) 

where a = 2 for a flow with plane symmetry and r = 3 
for a flow with axial symmetry. Note that for plumes 
and other shear flows where the flow development 
depends only on the distance x from the flow origin, 
we have 

E _ &)AYx) 
-E(,r)’ (8) 

The advantage of the proposed scaling is that it per- 
mits a direct comparison of the dissipation rate in 
flows driven by completely different mechanisms (e.g. 
inertia or buoyancy forces) and of different flow 
configurations (jets, shear layers, wakes, wall jets, 
boundary layers, etc.). 

An interesting result regarding the physical 
interpretation of the non-dimensional averaged dis- 
sipation rate E can be gained by calculating the dis- 
sipated energy per unit time in a circular pipe of diam- 
eter A. If f is the friction coefficient (in the Darcy- 
Weisbach equation) one may easily find that 

d(x)A’ 4f 
E=-- 

E(x) -rr. (9) 

It can be seen from this example that in bounded 
turbulent flows (when buoyancy is not present), the 
non-dimensional averaged energy dissipation rate 
defined by equation (7) is equal to the friction 
coefficient multiplied by a constant depending only 
on the geometry of the flow. Turning this around, one 
may be tempted to interpret the parameter E for free 
turbulent flows, as a gross interfacial ‘friction 
coefficient’. 

3. ESTIMATES FOR THE KINETIC ENERGY 

DISSIPATION IN JETS AND PLUMES 

TO obtain estimates for the averaged dissipation 
rate E^ in buoyant jets from available experimental 

data, we will perform an overall energy balance in a 
suitably chosen flow volume (see Fig. I) using the 
available experimental data for the mean and tur- 
bulent quantities. The ambient fluid is assumed of 
uniform density pil and motionless, the initial velocity 
is (I,; d the width of the flow at the origin. It is easy 
to find that the requirement for overall conservation 
of kinetic energy flux in the flow region between two 
horizontal cross sections at x = 0 and x (see Turner 
[2]) gives 

Eo+/!t,x = D(x)+E(x)+E,(x)+E,(x) (IO) 

where E0 is the flux of input kinetic energy, Do the 
buoyancy flux, which is constant for an unstratified 
environment, flr,x the work done by buoyancy forces 
per unit time between two horizontal cross sections at 
x = 0 and x, E(x) the flux of mean flow kinetic energy 
across a horizontal plane 

E(x) =; 

AW’2 

I 
(2ny)‘Cr3(x,y) dy _ 

A(X)/2 

1 

i = 0 for plane flow geometry 

i = 1 for round jet or plume (11) 

D(x) the total dissipation of energy per unit time 
in the buoyant jet between the two horizontal cross 
sections at x = 0 and x 

D(x) = x 

A(.Vl/ 2 

IS 
(27ry)‘~(x,y) dx d\ (12) 

0 -A(X)/ 2 

E,(x) the flux of turbulent kinetic energy across a 
horizontal plane at x 

E,(x) = ; 

h(r)/ 2 

I 
(2ny)‘U(x,y)q’ dy (13) _ 

A(X)/ 2 

E,(x) the flux of kinetic energy of the entrained fluid 
between the two horizontal planes at x = 0 and x 

E,(x) = r 
NW2 

ss 
(2rry)‘U;(x) dx d_r (14) 

0 -A(x)/ 2 

42 = z+p+;;;5 = turbulence intensity (15) 

UJx) = entrainment velocity 

U(x,y) = axial velocity 

= U,(x) exp [-In 2(r/b(x))‘] (16) 

V,(x) the velocity along the axis of the flow and b(x) 
the half width. 

In both round or plane buoyant jets the induced 
flow kinetic energy E,(x) is a negligible fraction 
(< 3%) of the mean kinetic energy flux E(x) and of 
the total dissipation D(x). Combining equations (2) 
and (10) we find that the average dissipation rate d(x) 
in the infinitesimal plume volume bounded by two 
horizontal planes at x and x dx is given by 

EdV= ,!I0 (17) 
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FIG. 2. Generalized friction coefficient E (= non-dimensional dissipation rate of kinetic energy) as a 
function of the Reynolds number Re. For pipe flow, A is equal to the pipe diameter D; k, is the pipe’s 
roughness. This figure can be considered as an extension of the well-known Moody diagram to free 
turbulent flows. Also plotted for comparison are the results of Abraham and Eysink [17] for the energy 
dissipated due to interfacial shear in lock exchange stratified ffow for an internal Froude number of&g. 

It should be noted that equation (17) is valid for a 
turbulent plane or round buoyant jet of any Rich- 
ardson number, and for free turbulent shear flows. 

Existing experimental results will be used to obtain 
numerical estimates for E(x) and E,(X) for jets and 
plumes. 

The calculations are presented in Table I, and the 
results are plotted in Fig. 2. 

The results presented in Table 1 indicate that the 
non-dimensional averaged dissipation rate E = .?A’/ 
E(X) is much larger for plumes than for jets, mainly 
for the plane geometry, i.e. given two flows, one 
driven by inertia forces and one by buoyancy 
forces, with equaf width A and equal mean kinetic 
energy flux E(x), the kinetic energy dissipation is 
larger for the flow driven by the buoyancy forces. 

This implies that the fictitious, gross interfacial ‘frie- 
tion coefficient’ E is larger for plumes than for jets. 
Note that the mean interfacial stress between jet (or 
plume) fluid {moving with a local mean velocity V,) 
and ambient (motionless) fluid can be defined as 

and it can be seen to be much larger for the plume 
than for the jet. This increase is consistent with the 
doubling of the entrainment coefficient in the tran- 
sition from pure plane jet to pure plane plume, and 
with the 5/3 increase of the entrainment coefficient in 
the transition from pure round jet to pure round 
plume 1151. The increase E from jets to plumes is larger 
for the plane geometry than for the axisymmetric and 
consistent with the similar increase of corresponding 
entrainment coefficient. 

It is worthwhile to point out that the arithmetic 
value of the non-dimensional average kinetic energy 
dissipation E depends strongly on the mean flow par- 
ameters (which can be determined with reasonabte 
accuracy) and is only moderately sensitive to the 
turbulence structure (parameter a,, or aq, etc., see 
Table 1). 

For example in Table 1 we estimated that uzp 2: 0.3 
and we found I&,, z 1.05. Assuming 100% error in 
estimating a.+, i.e. assuming ~7~ r 0.15, we find 
E, N 1.13, i.e. a 100% decrease of the fmx of 
turbulent kinetic energy gives only a 7% increase of 
the dimensionless dissipation E w. 

4. CONCLUSIONS 

The finding of this paper that the non-dimensiona 
kinetic energy dissipation rate, defined as E = .CA’/E, 
depends on the buoyancy structure of the flow is inter- 
esting. 

Higher values of the kinetic energy dissipation rate 
under buoyant instability, which is by its definition 
related to Iarger instantaneous velocity gradients, are 
probably due to the increased spatial density in- 
homogeneities that exist in buoyancy driven flows. 
In the Eulerian description, this corresponds to an 
increase in the intensity of density (or temperature) 
and velocity fluctuations. 

An analysis similar to the one that led to Table 1 is 
suitable for various other shear flow configurations 
with or without the presence of buoyancy. We believe 
that it offers an alternative approach to the (otherwise 
complex) task of the evaluation of the kinetic energy 
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dissipation rate-once the mean velocity profile, and 
the turbulence intensity profile have been determined 
with sufficient accuracy. In a flow with plane or axial 
symmetry, the use of the averaged dissipation rate E^ 
is equivalent to an assumption of a ‘top-hat’ profile 
for the distribution of .s, with a base equal to the width 
of the flow and height E’. Our belief in the usefulness 
of this assumption is strengthened by the findings of 
Gutmark and Wygnanski [7l regarding the shape of 
the kinetic energy dissipation profile in a plane jet 
when the time average was taken in the turbulent 
zone. They found that this conditionally averaged 
profile was flat, indicating that the familiar bell- 
shaped lateral distribution of E (reported for example 
in Bradbury [5]) is probably due to the intermittent 
presence of ambient entrained fluid in the jet flow 
field. It is of interest to note that the averaged dis- 
sipation rate 8, can be computed directly from the 
pointwise measurements of the energy dissipation 
E(X,Y) of Gutmark and Wygnanski [I in the plane jet, 
yielding 

integral analysis that relates E to local integral quan- 
tities governing the evolution of the flow field should 
not be underestimated. 
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E on the local mean flow parameters and contradicts, 13. 

to some extent, Kolmogorov’s first hypothesis, which 
states that the eddies in the dissipation range are in a 14. 
statistical sense universal and are independent of the 
mean parameters of the flow (this remark was pointed 
out by a referee of this paper). Monin and Yalgom 15. 
[18] recognize that E may depend on the properties of 
large scale motion. As they state, this is in fact the 
main reason why they have used the term ‘quasi- 

,6 
’ 

equilibrium range’ in the discussion of Kolmogorov 
theory and avoided speaking of ‘universal equi- 17. 
librium’. 

While more pointwise conditionally averaged ,8. 
measurements of a are needed to understand the mech- 
anism of energy dissipation, the usefulness of an 
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DISSIPATION DE L’ENERGIE CINETIQUE TURBULENTE DANS DES ECOULEMENTS 
CISAILLANTS DE FLOTTEMENT 

R&xu&-Gn propose une itude de la dissipation de I’inergie cinetique turbulente, pour application aux 
Coulements libres de cisaillement. L’avantage de la methode propos& est qu’elle permet une comparaison 
directe du taux de dissipation dans des icoulements mus par des m&anismes completement differents 
(comme lea forces d’inertie et &es de flottement) et de configurations d’icoulement differentes. La m&me 
mise d l’echehe, lorsqu’etle est appliq&e H I’&couiement en conduite, sugglre que le paramitre adimensionnel 
ainsi form0 est analogue a un “coefficient de frottement” pour ce mouvement. L’application de ce devel- 
oppement au mouvement des jets flottants et des panaches sugg&re quc le taux moyen de dissipation dans 
I’fooufement de panache conduit par flott~ent peut &e deux fois celui des jets et qu’il est associt P la 

plus grande vitesse d’entrainement darts de tels icoulements. 

DISSIPATION TURBULENTER KINETISCHER ENERGIE IN DURCH 
AUFTRIEBSKR&=TE ERZEUGTEN FREIEN SCHERSTRGMUNGEN 

Znsanunenfamantg-Es wird eine neue Mijglichkeit zur Bestimmung der mittleren Dissipation der tur- 
bulenten kinetischen Energie fiir die Anwendung bei freien Scherstr6mungen vorgeschlagen. Der Vorteil 
dieser Art der Bestimmung ist, dai3 sie einen direkten Vergleich der Dissipation in Striimungen mit vijlhg 
unt~hi~Iichen Ant~eb~~han~~ (z. B. Tr@heits- oder Auft~eb~~fte) und unte~hi~Ii~her 
Striimungsform zukiI&. Wird diese 3estimmungsm6glichkeit auf eine RohrstrBmung angewendet, SO ist 
der vorgeschlagene dimensionslose Parameter analog dem “Reibungsbeiwert” dieser Stremung. Die 
Anwendung auf eincn Auftriebsstrahl und eine Auftriebsfahne zeigt, daR die mittlere Dissipation in einer 
Auft~e~fahne bis zu zweimal so hoch sein kann wie in einem Au~riebsst~hl. Dies wird durch den stirkern 

MitreiSeffekt hervorgerufen. 

J@ICCHIIAHH3I TYPEYJIEHTHOH KHHETUVECKOH SHEPI-HH B 
C~~~GKOHBE~~HbiX CABRFOBMX IIOTOKAX 

~Hpenaonceno uonoe OllpCJW3JlCHBiC macmra6a cpeanel crropocrn ~u~ccwatttm ~yp6yneu~- 
Hoit xnrreruuecrofl oitepnnr ruta cnyuaes cno6om cnanronbR revetrnik fIpem4yrnecrno 3roro orrpe- 
Jtenennn 3aKJno’rBtTcI1 B TOM, ‘ITO OS0 IIO3- C&XlBliWaTb cxopomb squab B Texewisx, 

abi3Ba~~coBepLu~o~-Me xmnnum (xc. mepmeii sum noxzmfmmu cuJlahul)K 

HhfeHIPUIMH pa3Jlmnyw KOFI~ npl#Meli)sTeJlbnor TeWHEH) B Tpy6oX, JWIISOG OUfMWJWIHC 

~acurra69 npemroxaraer. rro H 6mpaahreprrbdI napakserp ananornnen “roa4+unerrry 
rpennn” nna paceasarpsmae~oro rwresnm. B cnyvae xe era rtp~msx K nnnxemno cao6omr0K0IrneK- 


