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Abstract—A new scaling of the mean rate of turbulent kinetic energy dissipation is proposed for application
to free shear flows. The advantage of the proposed scaling is that it permits a direct comparison of the
dissipation rate in flows driven by completely different mechanisms (e.g. inertia or buoyancy forces) and
of different flow configurations. The same scaling, when applied to pipe flow suggests that the non-
dimensional parameter so formed is analogous to a ‘friction factor’ for this motion. Application of this
development to the motion of buoyant jets and plumes suggests that the mean rate of dissipation in
buoyancy driven plume flows may be twice that for jets and is associated with the larger rate of entrainment
in such flows.

1. INTRODUCTION

THE RATE at which kinetic energy is dissipated is an
important parameter in the description of any fully
developed turbulent flow where, according to the
model proposed by Kolmogorov, energy is trans-
ferred in a cascade process from larger to smaller
scales. This process appears essentially inviscid down
to the equilibrium range of scales where the viscosity
v becomes important and, under its action, kinetic
energy is dissipated into heat. At equilibrium the rate
of energy supply from the mean flow to the largest
scales is therefore equal to the rate of kinetic energy
dissipation. It should be noted that while the dynamics
of the large structures of the turbulent flow are
governed by the overall geometry and driving forces,
the dynamics of the smallest structures in this model
are governed only by the viscosity and the dissipation
rate. The value of the strain rate (g/v)"/? defining the
Kolmogorov range of scales of the flow, becomes a
critical parameter in the study of processes that occur
at these small scales. These, for example, would
include the coagulation of suspended particles in a
moving fluid, the formation of droplets in a cloud,
the mechanism of mixing and product formation in
chemically reacting shear flows, etc. The rate at which
naturally occurring flows are dissipating energy is
important in engineering problems concerned with the
disposition of particles in an atmospheric or water
environment. Flows of this nature are often
characterized by the presence of buoyancy as a driving
force of motion. As was pointed out by List [1], the
research literature concerning buoyancy driven lab-
oratory flows is deficient compared to inertia driven
flows in general. While, for example, measurements
of the kinetic energy dissipation rate have been made
in the plane and round jets, shear layers, wakes and
boundary layers, similar measurements in buoyant
plumes have not been reported. This may be partly
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attributed to the increased experimental difficulty
associated with measurements in such buoyancy
driven flows. On the other hand Turner {2} pointed
out the large energy deficiency in self-preserving con-
vective plumes or thermals.

The rate of dissipation of total kinetic energy in a
turbulent flow (see for example Townsend [3]) can be
expressed as

U, azu,.]
e=vl|U—=—5+uy=—1.
[ fox} ' ox?

In free turbulent flows the mean velocities U, vary
smoothly across the flow, therefore spatial derivatives
are negligible compared to the spatial derivatives of
the instantaneous velocity fluctuations «; and can be
neglected. Then the kinetic energy dissipation rate is
approximated by

2
£=o (?—u—' + _6_u£> . (8))
2\0x;  ox;

Thus, a direct measurement of the dissipation rate at
a point in the flow would involve measurement of all
terms in equation (1). This has not been achieved
because of the obvious experimental difficulties associ-
ated with such a measurement. The usual approach
taken involves (i) making an assumption of isotropy
relevant to the particular flow in order to reduce the
number of terms to be measured and (ii) invoking
Taylor’s frozen turbulence hypothesis to replace the
spatial derivatives with temporal derivatives. Some-
times other terms in the equation for the turbulent
kinetic energy are also measured and a turbulence
kinetic energy budget is obtained. However, the pres-
sure velocity correlation term has not been measured
yet, hence this equation cannot be used to check the
accuracy of these two assumptions. Pointwise esti-
mates of ¢ in plane and round turbulent jets have been
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NOMENCLATURE
b(x) half width U, jet velocity at the exit.
d jet diameter at the exit
D(x) total dissipation of energy per unit time
(equation (12)) Greek symbols
E flux of mean flow kinetic energy across « parameter equal to 2 for a flow with
a horizontal plane (equation (11)), plane symmetry and equal to 3 for a
E(x) flow with axial symmetry
E.(x) flux of kinetic energy of the entrained Bo buoyancy flux
fluid (equation (14)) £ rate of dissipation of total kinetic
E(x) flux of turbulent kinetic energy across energy
a horizontal plane at x (equation é averaged kinetic energy dissipation rate
(14)) over a flow volume V
f friction coefficient in the Darcy- E non-dimensional number, éA*/E
Weisbach equation A width of turbulent flow—ambient fluid
u; turbulent fluctuation along the x.-axis boundaries, A(x)
U.(x) entrainment velocity v kinematic viscosity
U, mean velocity along the x-axis T mean interfacial stress
U.(x) mean axial velocity ¢ experimental coefficient.

performed by Heskestad [4}, Bradbury [5}, Wygnanski
and Fiedler [6], Gutmark and Wygnanski [7] and
Antonia et al. [8]. There appear to be no such measure-
ments in buoyant jets and plumes. However, reason-
able estimates of the kinetic energy dissipation rate
may be obtained from the available experimental data
on such flows. To this end, we introduce £, the aver-
aged kinetic energy dissipation rate over a flow
volume V defined as

f e(x,)dv

"

Time exposure photographs and measurements in
both jets and plumes indicate that the region where
jet fluid may be found is separated from the ambient
fluid region by approximately linear boundaries (see
Fig. 1) A(x) which may be well approximated by

A(x) = ¢x 3

where ¢ ~ 0.5 for round or plane jets and plumes.

Specifying the integrating volume V to be the
infinitesimal volume d¥ bounded by the planes x and
x dx (see Fig. 1) we define the averaged kinetic energy
dissipation & (per unit depth) for plane jets and plumes
by

x+dx  A(x)/2
E)A(x)dx = J J' &(x,y)dxdy (4)

—~A(x)/2

and for round jets and plumes by

X +dx A(x)/2
EYRrA?/4) dx = J‘ J 2nre(x, r) dx dr.

x -A(0)/2

Estimates of & will be obtained for the turbulent jet

and plume using experimental measurements of the
mean and turbulent flow quantities.

2. SCALING LAWS

Friche er al. [9] derived the following relation
between the kinetic energy dissipation rate ¢ along the
axis of a round jet, the exit diameter d, the velocity at
the jet exit U, and the axial distance x from the flow
origin:

&(x,0)d/U3 = C\(x/d)~*. &)

o

—X+3x

————— -

Time averaged flow
boundaries

ir
o

FiG. 1. Definition of the flow width A(x). The origin of the
jet (or plume)isat x =y = 0.
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Similarly, Antonia et al. [8] proposed for a plane jet
with slot width d, the relation

e(x,0) d/U3 = C,(x/d)=*>. ©6)

Although the above scaling for the dissipation rate is
successful in reducing experimental results in similar
flow geometries, the parameter &d/Ugy seems to have
limited physical significance. In particular, this scaling
is not directly applicable to a buoyant jet or a plume
of similar geometry. On physical grounds, one would
expect that the dissipation rate at a certain axial
location for both jets and plumes to depend on local
flow scales and not on initial parameters, such as the
orifice diameter. In view of recent developments in
the understanding of the importance of local integral
quantities in jet dynamics (see for example List [1], it
seems reasonable to scale the averaged dissipation rate
£, with the local kinetic energy flux Eand the local flow
width A. Then, on dimensional grounds, we obtain the
non-dimensional number
EN*
E
where a = 2 for a flow with plane symmetry and 2 = 3
for a flow with axial symmetry. Note that for plumes
and other shear flows where the flow development
depends only on the distance x from the flow origin,
we have

E=

0

E()A*(x)
E(x)

The advantage of the proposed scaling is that it per-
mits a direct comparison of the dissipation rate in
flows driven by completely different mechanisms (e.g.
inertia or buoyancy forces) and of different flow
configurations (jets, shear layers, wakes, wall jets,
boundary layers, etc.).

An interesting result regarding the physical
interpretation of the non-dimensional averaged dis-
sipation rate E can be gained by calculating the dis-
sipated energy per unit time in a circular pipe of diam-
eter A. If f is the friction coefficient (in the Darcy~
Weisbach equation) one may easily find that

é 3

=L ©
It can be seen from this example that in bounded
turbulent flows (when buoyancy is not present), the
non-dimensional averaged energy dissipation rate
defined by equation (7) is equal to the friction
coefficient multiplied by a constant depending only
on the geometry of the flow. Turning this around, one
may be tempted to interpret the parameter E for free
turbulent flows, as a gross interfacial ‘friction
coefficient’.

E= ®

3. ESTIMATES FOR THE KINETIC ENERGY
DISSIPATION IN JETS AND PLUMES

To obtain estimates for the averaged dissipation
rate £ in buoyant jets from available experimental
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data, we will perform an overall energy balance in a
suitably chosen flow volume (see Fig. 1) using the
available experimental data for the mean and tur-
bulent quantities. The ambient fluid is assumed of
uniform density p, and motionless, the initial velocity
is Uy ; d the width of the flow at the origin. It is easy
to find that the requirement for overall conservation
of kinetic energy flux in the flow region between two
horizontal cross sections at x = 0 and x (see Turner

[2]) gives
Ey+Box = D(X)+EX)+E(x)+ E.(x) (10)

where E, is the flux of input kinetic energy, B, the
buoyancy flux, which is constant for an unstratified
environment, 8,x the work done by buoyancy forces
per unit time between two horizontal cross sections at
x = 0 and x, E(x) the flux of mean flow kinetic energy
across a horizontal plane

1 A(x)/2

—A(x)/2

@my)Y U3 (x, ) dy
{i =0 for plane flow geometry an

i=1 forround jet or plume

D(x) the total dissipation of energy per unit time
in the buoyant jet between the two horizontal cross
sections at x = 0 and x

X Ax)/ 2 )
D(x) = J. j @ryYe(x,p)dxdy  (12)
0 J-A(x)2

E(x) the flux of turbulent kinetic energy across a
horizontal plane at x

1 A(x)/2 ) ,
E(x)= 3 - Qry)U(x,»)q° dy

—Alx

(13)

E (x) the flux of kinetic energy of the entrained fluid
between the two horizontal planes at x = 0 and x

&m=f

F=u 0 +w?

Alx)/ 2

2ry)Y U2 (x) dx dy

—A(x)/2

(14

= turbulence intensity (15)
U.(x) = entrainment velocity
U(x, y) = axial velocity
= Un(x) exp [~In 2(3/b(x))*] (16)

Uu(x) the velocity along the axis of the flow and b(x)
the half width.

In both round or plane buoyant jets the induced
flow kinetic energy E.(x) is a negligible fraction
(<3%) of the mean kinetic energy flux E(x) and of
the total dissipation D(x). Combining equations (2)
and (10) we find that the average dissipation rate &(x)
in the infinitesimal plume volume bounded by two
horizontal planes at x and x dx is given by

d
£dV = o~ - [E(x)+ E(x)]. an
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Fi1G. 2. Generalized friction coefficient E (= non-dimensional dissipation rate of kinetic energy) as a
function of the Reynolds number Re. For pipe flow, A is equal to the pipe diameter D; &, is the pipe's
roughness, This figure can be considered as an extension of the well-known Moody diagram to free
turbulent flows. Also plotted for comparison are the results of Abraham and Eysink [17] for the energy
dissipated due to interfacial shear in lock exchange stratified flow for an internal Froude number of 0.8.

It should be noted that equation (17) is valid for a
turbulent plane or round buoyant jet of any Rich-
ardson number, and for free turbulent shear flows.

Existing experimental results will be used to obtain
numerical estimates for E(x) and E(x) for jets and
plumes.

The calculations are presented in Table 1, and the
results are plotted in Fig. 2.

The results presented in Table 1 indicate that the
non-dimensional averaged dissipation rate E = éAY/
E(x) is much larger for plumes than for jets, mainly
for the plane geometry, i.e. given two flows, one
driven by inertia forces and one by buoyancy
forces, with equal width A and equal mean kinetic
energy flux E(x), the kinetic energy dissipation is
larger for the flow driven by the buoyancy forces.

This implies that the fictitious, gross interfacial ‘fric-
tion coefficient” E is larger for plumes than for jets.
Note that the mean interfacial stress between jet (or
plume) fluid (moving with a local mean velocity U,,)
and ambient {motionless) fluid can be defined as

t=Epl2

and it can be seen to be much larger for the plume
than for the jet. This increase is consistent with the
doubling of the entrainment coefficient in the tran-
sition from pure plane jet to pure plane plume, and
with the 5/3 increase of the entrainment coefficient in
the transition from pure round jet to pure round
plume [15). The increase E from jets to plumes is larger
for the plane geometry than for the axisymmetric and
consistent with the similar increase of corresponding
entrainment coefficient.

It is worthwhile to point out that the arithmetic
value of the non-dimensional average kinetic energy
dissipation E depends strongly on the mean flow par-
ameters (which can be determined with reasonable
accuracy) and is only moderately sensitive to the
turbulence structure (parameter a-, or a,,, €tc., see
Table 1).

For example in Table | we estimated that a,, = 0.3
and we found E,, ~ 1.05. Assuming 100% error in
estimating a,, i.e. assuming a., > 0.15, we find
E, = 113, ie. a 100% decrease of the flux of
turbulent kinetic energy gives only a 7% increase of
the dimensionless dissipation E,.

4. CONCLUSIONS

The finding of this paper that the non-dimensional
kinetic energy dissipation rate, defined as E = éA*/E,
depends on the buoyancy structure of the flow is inter-
esting.

Higher values of the kinetic energy dissipation rate
under buoyant instability, which is by its definition
related to larger instantaneous velocity gradients, are
probably due to the increased spatial density in-
homogeneities that exist in buoyancy driven flows.
In the Eulerian description, this corresponds to an
increase in the intensity of density (or temperature}
and velocity fluctuations.

An analysis similar to the one that led to Table 1 is
suitable for various other shear flow configurations
with or without the presence of buoyancy. We believe
that it offers an alternative approach to the (otherwise
complex) task of the evaluation of the kinetic energy
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dissipation rate—once the mean velocity profile, and
the turbulence intensity profile have been determined
with sufficient accuracy. In a flow with plane or axial
symmetry, the use of the averaged dissipation rate é
is equivalent to an assumption of a ‘top-hat’ profile
for the distribution of ¢, with a base equal to the width
of the flow and height . Our belief in the usefulness
of this assumption is strengthened by the findings of
Gutmark and Wygnanski {7] regarding the shape of
the kinetic energy dissipation profile in a plane jet
when the time average was taken in the turbulent
zone. They found that this conditionally averaged
profile was flat, indicating that the familiar bell-
shaped lateral distribution of ¢ (reported for example
in Bradbury [5]) is probably due to the intermittent
presence of ambient entrained fluid in the jet flow
field. It is of interest to note that the averaged dis-
sipation rate &, can be computed directly from the
pointwise measurements of the energy dissipation
&(x, y) of Gutmark and Wygnanski [7] in the plane jet,
yielding
EN?
E= oo 0.26

which compares favorably with our calculations based
on the velocity profiles (=0.29). The advocated non-
dimensional parameter E enables a good estimate of
the mean dissipation rate £ to be made in flows where
no such measurements exist. Moreover, it is a con-
venient scaling, in that it permits a direct comparison
of ¢ in different flows (as shear layers, wakes, bound-
ary layers, etc.). For example, we estimated, using the
method outlined that §A%/E = 0.16 in a shear layer
where one stream is not moving and A%/E = 2 29 for
a plane bubble plume.

It is interesting to notice that the value of E for
non-buoyant jets and mixing layers is strongly depen-
dent of the spreading angle, and is independent of the
rate of velocity decay.

The shift from ed/U? to E suggests a dependence of
¢ on the local mean flow parameters and contradicts,
to some extent, Kolmogorov’s first hypothesis, which
states that the eddies in the dissipation range are in a
statistical sense universal and are independent of the
mean parameters of the flow (this remark was pointed
out by a referee of this paper). Monin and Yalgom
[18] recognize that ¢ may depend on the properties of
large scale motion. As they state, this is in fact the
main reason why they have used the term ‘quasi-
equilibrium range’ in the discussion of Kolmogorov
theory and avoided speaking of ‘universal equi-
librium’.

While more pointwise conditionally averaged
measurements of ¢ are needed to understand the mech-
anism of energy dissipation, the usefulness of an
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integral analysis that relates E to local integral quan-
tities governing the evolution of the flow field should
not be underestimated.
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DISSIPATION DE L'ENERGIE CINETIQUE TURBULENTE DANS DES ECOULEMENTS
CISAILLANTS DE FLOTTEMENT

Résumé—On propose une étude de la dissipation de I'énergie cinétique turbulente, pour application aux
écoulements libres de cisaillement. L"avantage de la méthode proposée est qu'elle permet une comparaison
directe du taux de dissipation dans des écoulements mus par des mécanismes complétement différents
(comme les forces d'inertie et celles de flottement) et de configurations d’écoulement différentes. La méme
mise & Péchelle, lorsqu'elle est appliquée & I'écoulement en conduite, suggére que le paramétre adimensionnel
ainsi formé est analogue & un “coefficient de frottement™ pour ce mouvement. L’application de ce dével-
oppement au mouvement des jets flottants et des panaches suggére que le taux moyen de dissipation dans
I"écoulement de panache conduit par flottement peut &tre deux fois celui des jets et qu'il est associé & la
plus grande vitesse d’entrainement dans de tels écoulements,

DISSIPATION TURBULENTER KINETISCHER ENERGIE IN DURCH
AUFTRIEBSKRAFTE ERZEUGTEN FREIEN SCHERSTROMUNGEN

Zusammenfassung—Es wird eine neue Mdglichkeit zur Bestimmung der mittleren Dissipation der tur-
bulenten kinetischen Energie fiir die Anwendung bei freien Scherstromungen vorgeschlagen. Der Vorteil
dieser Art der Bestimmung ist, daB sie einen direkten Vergleich der Dissipation in Strdmungen mit vollig
unterschiedlichen Antricbsmechanismen (z. B. Trigheits- oder Auftriebskrifte) und unterschiedlicher
Strémungsform zuldBt. Wird diese Bestimmungsmdglichkeit auf eine Rohrstrdmung angewendet, so ist
der vorgeschlagene dimensionslose Parameter analog dem ‘‘Reibungsbeiwert” dieser Strémung. Die
Anwendung auf einen Auftriebsstrahl und eine Auftriebsfahne zeigt, daB die mittlere Dissipation in einer
Auftriebsfahne bis zu zweimal so hoch sein kann wie in einem Auftriebsstrahl. Dies wird durch den stirkern
MitreiBeffekt hervorgerufen.

JAUCCUNALIMA TYPBYJIEHTHOM KMHETMYECKOM 3HEPTHHM B
CBOBOTHOKOHBEKTHBHBIX CABHIOBBIX ITOTOKAX

Ammoramn—TIpesioxeHo HOBOS OnpexeicHHe MacluTaba cpeanell CKOPOCTH mMccHmauuy TypSynent-
HON XHHETHYECKOil JHEPTUK AN crydaes ceoboaunx ciBurosbix Tedenuit. [peumyitectso storo onpe-
RENCHHS 3aK/HOYALTCR B TOM, MTO OHO IOIBOJACT CPABHHBATE CKOPOCTH IHCCHNALMH B TECUCHHRX,
BBIIBRHHBIX COBCPIMCHHO DRAIHYHBIME MCXRNHIMEME (T.C. WMEDUMCH HAH NOXBCMHBIME CRIAMM) H
HMCIOMMMHE pasminylo xongurypamno. IIpuMennTeNsRo K Tevemnio B Tpybax, HaHHOS OTPENCICHHC
maciurraba npemnonaraer, wro yxasauwnmil GespamepHult napamerp aHanormucH “xodpduumenty
TPCHHS ™ ZINA PACCMATPHBACMOrO TeueHHs. B ciryyae Xe ero npuMeHeHNus X ABIKeHUIO caoboaROKONBEX-
TMBHBIX CTPY# H NOTOKOB NPEANONATAcTCA, ITO CPCAHAR CXOPOCTL AMCCHOALMA B CBOGOAHOKOHBEKTHB-
HBIX BOCXOJNUIHX TOTOKAX MOXET BABOS MPEBOCXOIMTL 3TY XK€ BEAMTHHY IUIA CTPYH W MomeT GuiTh
cas3aHa ¢ Sompuuell CXOpPOCTHIO YHOCA B JAHHBIX MOTOKAX.



